

AQA Chemistry A-level Topic 1.2 - Amount of Substance

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Define Relative Molecular Mass

Define Relative Molecular Mass

Average mass of the naturally occurring isotopes of a compound, compared to $1/_{12}$ mass of an atom of carbon-12 (C¹²)

Define Relative Atomic Mass

Define Relative Atomic Mass

Average mass of the naturally occurring isotopes of an atom, compared to $1/_{12}$ mass of an atom of carbon-12 (C¹²)

Define the Avogadro constant.

Define the Avogadro constant.

Number of particles/atoms/ions in one mole of a substance

Write the equation that links mass of 1 mol, mass of 1 atom and Avogadro constant

Write the equation that links mass of 1 mol, mass of 1 atom and Avogadro constant

Mass of 1 mol = mass of 1 atom/molecule X Avogadro constant

Define percentage yield.

Define percentage yield.

The % of a product produced by a reaction, compared to a theoretical maximum

How would you calculate percentage yield?

How would you calculate percentage yield?

Mass of useful product ÷ expected mass of useful product

What can the percentage yield of a practical be used to investigate?

What can the percentage yield of a practical be used to investigate?

Efficiency of practical techniques and whether

reactions proceed as estimated

Define atom economy.

Define atom economy.

% of amount of reactants made into a certain (useful) product

How would you calculate atom economy?

How would you calculate atom economy?

Mr of atoms of useful product ÷ Mr of atoms of reactants

What can the atom economy of a reaction be used to investigate?

What can the atom economy of a reaction be used to investigate?

Efficiency of using a specific reaction to produce a product

Write the Ideal Gas Equation (in symbols and in words, with units for each thing)

Write the Ideal Gas Equation (in symbols and in words, with units for each thing)

PV = nRT

Pressure × volume = number of moles × gas constant ×

temperature

Pressure in Pa, volume in m³, temperature in K, R=8.31

What are standard conditions?

25°C/298K

1atm/100kPa

How do you convert between K and C temperatures?

How do you convert between K and C temperatures?

°C to K + 273

K to °C - 273

Define empirical formula

Define empirical formula

Simplest whole number ratio of atoms in a compound

What is the equation that links mols, concentration and volume?

What is the equation that links mols, concentration and volume?

Moles = concentration × volume

What is the equation that links moles, mass and Mr?

What is the equation that links moles, mass and Mr?

Moles = mass / Mr

